SIZE OF CONDENSATE NUCLEI IN A STREAM

OF SUPERSATURATED VAPOR

S. M. Bazarov, A. G. Blokh, and S. V. Varvarin

Analyzed is the effect of the relative vapor stream velocity on the size of condensate nuclei.

Many studies have been published so far [1-3 et al.] concerning the size of condensate nuclei in stationary supersaturated vapor. The results of these studies can be used for analyzing the process of initial phase transformation in a vapor stream, of course, but only under the condition that the relative velocity between the phases is zero.

In practice one usually encounters problems of condensation in a vapor stream where droplets move relative to it. Quite understandably, the conditions of the vapor flow cannot but affect the kinetics of condensation. It has been shown in [4] that an important factor in the process of homogeneous condensation is the mean free-flow-time of a droplet. This mean free-flow-time will be defined as the mean time during which a droplet moves without colliding against vapor molecules, i.e., the time between two successive collisions of a droplet containing g molecules against single vapor molecules.

We will determine the mean free-flow-time τ_g of a droplet whose radius is r_g and which consists of g molecules, the radius of each molecule being r_1 , when $g \gg 1$ and the relative velocity of the vapor stream is V_{1g} . For the purpose of analysis, we consider separately a fictitious spherical surface (Fig. 1) with the radius

$$r = r_{g} + r_{1}$$

representing the effective collision surface between a droplet complex (radius r_g) and a vapor molecule (radius r_i), and we calculate the number of collisions between vapor molecules and this surface per unit time.

The surface of the hemisphere facing the vapor stream $(0 \le \theta \le \pi/2)$ will be denoted by S₊, the back surface $(\pi/2 \le \theta \le \pi)$ will be denoted by S₋. Elementary spherical zones on the front surface and on the back surface will be denoted by dS₊ and dS₋, respectively. The area of such an elementary zone on the given spherical surface is

$$dS = 2\pi r^2 \sin \theta d\theta. \tag{1}$$

Let us determine the number of molecules dn_+ colliding against an elementary surface element dS_+ per unit time. According to [5], we can write

$$dn_{+} = n_{1} \frac{V_{m}}{2 \sqrt{\pi}} \left\{ \exp\left(-\eta_{n}^{2}\right) + \sqrt{\pi} \eta_{n} \left[1 + \operatorname{erf}\left(\eta_{n}\right)\right] \right\} dS_{+}.$$
 (2)

Analogously, the number of collisions dn_ against a surface element dS_ is

$$dn_{-} = n_{1} \frac{V_{m}}{2 \sqrt{\pi}} \left\{ \exp\left(-\eta_{n}^{2}\right) - \sqrt{\pi} \eta_{n} \left[1 - \operatorname{erf}\left(\eta_{n}\right)\right] \right\} dS_{-}.$$
(3)

Here

$$V_m = \sqrt{\frac{2kT}{m_1}}$$

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 1, pp. 53-58, January, 1973. Original article submitted August 10, 1971.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Fig. 1. Diagram to show effective section through a colliding system (fictitious spherical surface). Fig. 2. Variation in the relative mean free-flow-time of a droplet.

Fig. 3. Number of molecules in a condensate nucleus, as a function of the degrees subcool ΔT (°K) in water vapor.

is the most probable thermal velocity of vapor molecules. The quantity

$$\eta_n = \frac{(V_{1g})_n}{V_m}$$

characterizes the ratio of two velocities: the component of the relative vapor velocity $(V_{ig})_n$ normal to the surface element and the most probable thermal velocity of vapor molecules V_m .

The error function in (2) and (3) is

$$\operatorname{erf}(\eta_n) = \frac{2}{\sqrt{\pi}} \int_0^{\eta_n} \exp\left(-x^2\right) dx.$$
(4)

With the dimensionless relative vapor velocity

$$\eta = \frac{V_{1g}}{V_m} = \eta_n \; \frac{V_{1g}}{(V_{1g})_n},$$

we can write

$$\eta_n = \eta \cos \theta. \tag{5}$$

Having thus determined the number of collisions n_+ and n_- between vapor molecules and surfaces S_+ , S_- , respectively, we find the total number of collisions

$$n = n_+ + n_-. \tag{6}$$

In order to determine n_+ and n_- , it is necessary to integrate expressions (2) and (3) with respect to S_+ and S_- , respectively. Taking into account (1) and (5), we obtain

$$n_{+} = n_{1} \sqrt{\frac{2kT}{\pi m_{1}}} \pi r^{2} F_{+}(\eta), \qquad (7)$$

$$n_{-} = n_{1} \sqrt{\frac{2kT}{\pi m_{1}}} \pi r^{2} F_{-}(\eta), \qquad (8)$$

where

$$F_{+}(\eta) = \frac{\sqrt{\pi}}{2} \cdot \frac{\operatorname{erf}(\eta) + \eta^{2} + 2\int_{0}^{\eta} x \operatorname{erf}(x) \, dx}{\eta} , \qquad (9)$$

39

$$F_{-}(\eta) = \frac{\sqrt{\pi}}{2} \cdot \frac{\operatorname{erf}(\eta) - \eta^{2} + 2\int_{0}^{\eta} x \operatorname{erf}(x) dx}{\eta} .$$
(10)

With the aid of these relations, it is not difficult to determine the total number of molecules colliding against a droplet per unit time:

$$n = n_1 \sqrt{\frac{8kT}{\pi m_1}} \pi r^2 F(\eta), \qquad (11)$$

where

$$F(\eta) = \frac{1}{2} \left[F_{+}(\eta) + F_{-}(\eta) \right] = \frac{\sqrt{\pi}}{2} \cdot \frac{\operatorname{erf}(\eta) + 2 \int_{0}^{\eta} x \operatorname{erf}(x) \, dx}{\eta} \,. \tag{12}$$

When the relative vapor velocity $V_{1g} = 0$, then $\eta = 0$ and function $F(\eta) = 1$. Under these conditions formula (11) becomes the well-known formula for the number of collisions between vapor molecules and a sphere of radius r_g in a stationary gaseous medium:

$$n_0 = n_1 \, \left| \sqrt{\frac{8kT}{\pi m_1}} \, \pi r^2 \right|$$
(13)

Knowing the number of collisions between a droplet and vapor molecules per unit time, we can easily determine the mean free-flow-time for a complex of g molecules:

$$\tau_{g} = \frac{1}{n} = \frac{1}{n_{1} \sqrt{\frac{8kT}{\pi m_{1}} \pi r^{2} F(\eta)}}.$$
(14)

When there is no relative motion, i.e., $\eta = 0$, then formula (14) becomes the well-known formula for the mean free-flow-time of a droplet in stationary vapor:

$$\tau_{g}^{0} = \frac{1}{n_{1} \sqrt{\frac{8kT}{\pi m_{1}} \pi r^{2}}} .$$
(15)

With the aid of (14) and (15), we set up the ratios

$$\Phi(\eta) = \frac{\tau_g}{\tau_g^0} , \qquad (16)$$

and

$$\Phi(\eta) = 1/F(\eta). \tag{17}$$

The trend of τ_g/τ_g^0 as a function of η is well indicated by the curve in Fig. 2. As the dimensionless relative velocity of the vapor stream η increases, according to the graph, the quantity τ_g/τ_g^0 decreases. For low relative vapor velocities ($\eta \ll 1$) the first two terms in the Taylor series expansion of erf(x)

$$\operatorname{erf}(x) \approx \frac{2x}{\sqrt{\pi}} \left(1 - \frac{x^2}{3}\right), \tag{18}$$

yield, after simple transformations,

$$\tau_g = \frac{\tau_g^0}{1 + \frac{1}{3} \eta^2 - \frac{2}{15} \eta^4} \,. \tag{19}$$

Formula (19) determines the mean free-flow-time of a droplet as a function of the relative vapor velocity at low values of η .

For high relative vapor velocities ($\eta \gg 1$) the first two terms in the asymptotic series expansion of erf(x)

$$\operatorname{erf}(x) \approx 1 - \frac{\exp\left(-x^{2}\right)}{x + \pi}, \qquad (20)$$

yield a hyperbolic relation

$$\tau_g = \frac{2}{\sqrt{\pi}\eta} \tau_g^0 \,. \tag{21}$$

Let us now determine the critical size of a condensate nucleus under the given conditions. For this it is necessary to establish what number of molecules in a droplet g_{cr} will produce a dynamic equilibrium between incoming and outgoing molecules.

As has been shown in [4], a droplet consisting of g_{cr} molecules may be in dynamic equilibrium with the vapor when the probability p_{-} of one droplet molecule evaporating is equal to the probability p_{+} of one vapor molecule condensing. In accordance with the kinetic theory of liquids [1] and gases [5],

$$p_{-} \approx \frac{t}{\tau_{g}^{*}} \text{ and } p_{+} \approx \frac{t}{\tau_{g}}$$
 (22)

Here

$$\tau_{g}^{*} = \frac{\Delta}{\sqrt{\frac{8kT}{\pi m_{1}}}} \exp\left(\frac{U_{g}}{kT}\right)$$
(23)

is the mean time of interaction between vapor molecules and a droplet. It follows from (22) that a complex of g_{cr} molecules may be in dynamic equilibrium with the ambient vapor when the mean time of their interaction τ_g^* becomes equal to the mean free-flow-time of the complex. The size of such a complex is determined by the number of molecules g_{cr} in it, namely

$$r_{\rm cr} = 2r_{\rm 1} \left[\sqrt{\frac{1}{4\pi r_{\rm 1}^2 n_{\rm 1}} \cdot \frac{\Phi\left(\eta\right)}{\Delta}} \exp\left(-\frac{V_g}{2kT}\right) - \frac{1}{2} \right]. \tag{24}$$

Inserting into (24) the mean free-flow-path

$$\lambda_1 = \frac{1}{4\pi r_1^2 n_1},\tag{25}$$

we obtain

$$r_{\rm cr} = 2 r_{\rm I} \left[\sqrt{\frac{\lambda_{\rm I}}{\Delta} \Phi(\eta)} \exp\left(-\frac{V_g}{2kT}\right) - \frac{1}{12} \right]. \tag{26}$$

The number of molecules in a droplet of critical size is then

$$g_{\rm cr} = 8 \left[\sqrt{\frac{\lambda_1}{\Delta} \Phi(\eta)} \exp\left(-\frac{V_g}{2kT}\right) - \frac{1}{2} \right]^3.$$
(27)

Unlike in [4], formulas (24) and (27) take into account the effect of the relative vapor velocity on r_{cr} and g_{cr} . For the condensation in a stationary medium ($V_{1g} = 0$ and $\eta = 0$) formulas (24) and (27) become directly the well-known formulas in [4].

The critical number of molecules g_{cr} as a function of degrees subcool ΔT is shown in Fig. 3 for water vapor under a pressure of 0.5 bar and at various values of η from 0 to 5. The graph indicates that at each value of η the number of molecules in a condensate nucleus decreases as the degrees subcool increase. As the dimensionless relative velocity η increases, the number of molecules in a critical-size droplet decreases continually. For low relative velocities ($\eta \ll 1$) Eqs. (12), (17), and (18) yield

$$r_{\rm cr} = 2r_{\rm I} \left[\sqrt{\frac{\lambda_{\rm I}}{\Delta} \cdot \frac{1}{1 + \frac{1}{3}\eta^2 - \frac{2}{15}\eta^4}} \exp\left(-\frac{V_g}{2kT}\right) - \frac{1}{2} \right], \tag{28}$$

and

$$g_{\rm cr} = 8 \left[\sqrt{\frac{\frac{\lambda_1}{\Delta}}{1 + \frac{1}{3}\eta^2 - \frac{2}{15}\eta^4}} \exp\left(-\frac{V_{\rm g}}{2kT}\right) - \frac{1}{2} \right]^3$$
(29)

For high relative velocities $(\eta \gg 1)$ Eqs. (12), (17), and (26) yield

$$r_{\rm cr} = 2r_1 \left[\sqrt{\frac{\lambda_1}{\Delta} \cdot \frac{2}{1 \, \bar{\pi} \eta}} \exp\left(-\frac{V_g}{2kT}\right) - \frac{1}{2} \right]$$
(30)

and

$$g_{\rm cr} = 8 \left[\sqrt{\frac{\bar{\lambda}_1}{\Delta} \cdot \frac{2}{\sqrt{\pi}\eta}} \exp\left(-\frac{V_g}{2kT}\right) - \frac{1}{2} \right]^3.$$
(31)

These formulas yield the values of r_{cr} and g_{cr} for two extreme cases of a two-phase flow: when the relative velocity between vapor and droplets is low and when the thermal velocity of vapor molecules is high.

NOTATION

- Δ is the width of potential gap;
- k is the Boltzmann constant;
- m_i is the mass of a molecule;
- n_1 is the number of molecules per unit vapor volume;
- T is the absolute temperature of vapor;
- V_g is the energy of bond between a molecule and a complex;
- t is the time.

LITERATURE CITED

- 1. Ya. I. Frenkel', Kinetic Theory of Liquids [in Russian], Izd. AN SSSR (1945).
- 2. P. S. Epshtein, Study Course in Thermodynamics [in Russian], Goskhimizdat (1948).
- 3. W. Thompson, Phil. Mag., 4, 42, 448 (1871).
- 4. A. G. Blokh, S. M. Bazarov, and S. V. Varvarin, Inzh.-Fiz. Zh., 19, No. 5 (1970).
- 5. H. Sh. Tsian, in: Gas Dynamics [Russian translation], IL (1950).